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SUMMARY

In this work we present a discontinuous Galerkin (DG) method designed to improve the accuracy and effi-
ciency of the steady-state solution at very low Mach number flows using an explicit scheme. The algorithm
is based on a perturbed formulation of the compressible Euler equations and employs the preconditioning
of both the instationary term of the governing equations and the dissipative term of the numerical flux
function (full preconditioning approach).

The performance of the scheme is demonstrated by solving an inviscid flow past a NACA0012 airfoil
at different very low Mach numbers using various degrees of polynomial approximation. We present
numerical results computed with and without perturbed variables, which illustrate the influence of the
cancellation errors on both the convergence and the accuracy of the DG solutions at low Mach numbers.
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1. INTRODUCTION

Discontinuous Galerkin (DG) methods have received more and more attention in the last years
because of their appealing features that justify the widespread application of these methods. In
particular, the minimal amount of numerical dissipation and the potential to reduce the gridding
requirements and the time necessary to achieve a desired accuracy level of DG solutions make
this method very appealing for low Mach number flow computations [1, 2].
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The difficulty in solving the compressible Euler equations at low Mach number is due to the large
disparity of wave speeds. The well known, undesirable effects of low-speed flow on most numerical
schemes include low convergence speed and loss of accuracy, [3–5]. Another issue related to
the numerical solution of low-speed flows concerns the careful implementation of non-reflecting
boundary conditions [6–8].

Several preconditioning techniques, applied to the governing equations and to their discretiza-
tions, have been developed in the past to cope with the stiffness and accuracy problems [6, 9–11].
These techniques basically scale the wave speeds to the same order of magnitude premultiplying the
time derivative terms of the governing equations by a preconditioning matrix. For the large family
of upwind schemes, preconditioning enters also in the formulation of numerical flux functions
in order to properly balance the artificial dissipation implied by the numerical flux formulation,
[4, 5, 12]. Some of the most recognized local preconditioners for inviscid and viscous flows were
proposed by Turkel [9, 10], Lee and van Leer [11], Weiss and Smith [13] and Choi and Merkle [14].

Recently, Nigro in [15, 16] introduced the low Mach number preconditioning for DG discretiza-
tions and reported for Mach numbers down to M=10−3 that the preconditioning technique results
in a significant improvement of the convergence speed. Furthermore, it has been shown that the
preconditioning enhances the accuracy of numerical solutions.

Nevertheless, it is difficult or impossible to solve Euler equations at very low Mach numbers
even with preconditioning. This is due to cancellation errors that occur as an accumulation effect
of round-off errors. Round-off errors depend mainly on the floating point representation used and
are thus unavoidable.

The problem of the cancellation error can be minimized by formulating the governing equations
in terms of perturbed variables [17, 18]. Reference quantities are introduced in the equations for
the thermodynamic variables and the computations are performed for the fluctuations.

The governing equations are unaltered and the method can be used in conjunction with standard
numerical strategies, like preconditioning. Several previous studies [14, 19–22] showed that this
problem can be alleviated by employing the concept of gauge pressure, in which the pressure
is decomposed into a constant reference pressure and a relative pressure. Sesterhenn et al. [17]
extended the relative treatment to all variables and flux vectors. Nevertheless, Lee [23] showed that
this approach produced a slight improvement in the convergence process of the energy equation,
while the precision of floating-point variables was a much more important factor in the calculations
of the temperature field at very low Mach numbers. Usually, double precision allows to circumvent
the problem of cancellation errors for engineering accuracy. Notwithstanding, this floating point
representation cannot be sufficient to obtain higher accurate results: the higher the accuracy of
solution, the larger the number of computations with round-off error occurring at each computation.
Thus, the perturbed formulation of the governing equations becomes mandatory to obtain a highly
accurate representation of the unknowns at low Mach numbers using higher-order schemes.

Finally, concerning the set of dependent variables, it has been shown in [24] that the conservative
incompressible formulation is well defined only for the entropy variables and the primitive variables
including pressure. It has also been shown that these two sets of variables are best suited for solving
practical problems, with the primitive variables being more accurate than the entropy variables
for low speed and incompressible flow computations. For these reasons the primitive variables are
often preferred for low Mach number computations [13, 14, 23, 25] and they have also been used
to develop numerical schemes well suited for both compressible and incompressible flows.

In this paper we present a preconditioned DG discretization of the two-dimensional compressible
Euler equations suitable to compute inviscid very low Mach number flows. The preconditioning
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affects both the time derivative terms of the governing equations, through the action of the Weiss
and Smith preconditioning matrix [13], and the numerical dissipation of Roe’s Riemann solver
used to compute the numerical flux (full preconditioning technique). The method is applicable
only to steady-state simulations as the preconditioning of the unsteady terms destroys the time
accuracy of the governing equations. The conservative system of equations is written in terms of
perturbed variables and iterated to steady state using an explicit scheme.

This paper aims at giving a contribution on developing a conservative DG scheme that is suitable
for compressible and incompressible flows. In particular, here we extend the DG discretization of
the Euler equations, written in the most appropriate set of primitive variables, to the incompressible
limit, we consider the relationships between convergence characteristics and the Mach number
for different degrees of polynomial approximation, and, finally, we examine the influence of the
cancellation error on both the accuracy of solutions and the convergence characteristics, taking
into account the effect of the polynomial degree.

The outline of the paper is as follows. In Section 2 we present the preconditioned form of
the compressible Euler equations using primitive variables and perturbed variables. In Section 3
we describe the DG discretization of the governing equations, the boundary conditions and the
preconditioned numerical flux function. In Section 4 we give some details on the explicit time-
stepping scheme. The performance of the numerical scheme is then demonstrated in Section 5
by computing an inviscid flow around a NACA0012 airfoil for different very low Mach numbers
(down to M=10−15) and different degrees of polynomial approximation (P=1,2,3). Finally, a
few conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS

2.1. The preconditioned compressible Euler equations

We consider the preconditioned two-dimensional compressible Euler equations in conservative
form as

C
�q
�t

+∇·F=0 (1)

The primitive variables q and the cartesian components f and g of the flux function F are
given by

q=

⎛
⎜⎜⎜⎜⎝

p

u

v

T

⎞
⎟⎟⎟⎟⎠ , f=

⎛
⎜⎜⎜⎜⎜⎝

�u

�u2+ p

�uv

�Hu

⎞
⎟⎟⎟⎟⎟⎠

, g=

⎛
⎜⎜⎜⎜⎜⎝

�v

�vu

�v2+ p

�Hv

⎞
⎟⎟⎟⎟⎟⎠

(2)

where p is the pressure, T is the fluid temperature, u and v are the velocity components, � is the
density and H is the total enthalpy per unit mass. By assuming that the fluid obeys the perfect gas
state equation, H is given by H =cpT +0.5(u2+v2), where cp denotes the isobaric specific heat
capacity of the fluid, and � can be calculated as �= p/T .
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The matrix C used in the present work is the local preconditioning matrix of Weiss and Smith [13]
written in the following form:

C=

⎛
⎜⎜⎜⎜⎜⎝

� �T 0 0

�u �T u � 0

�v �T v 0 �

�H−1 �T H+�cp �u �v

⎞
⎟⎟⎟⎟⎟⎠

(3)

where �T=��/�T |p=const. and � is given by

�=
(

1

U 2
r

− �T

�cp

)
(4)

Here, Ur is a reference velocity which, for an ideal gas, is defined as

Ur=

⎧⎪⎨
⎪⎩

εc if |v|<εc

|v| if εc<|v|<c

c if |v|>c

(5)

where c is the acoustic speed and ε is a small number included to prevent singularities at stagnation
points. Furthermore, by assuming that the fluid obeys the perfect gas state equation, �T can be
calculated as �T =−�/T . Choosing ε=O(M), the low Mach preconditioning ensures that the
convective and acoustic wave speeds are of similar magnitude, proportional to the flow speed [26].

In the next section we will show how preconditioning enters in the formulation of the numerical
flux function in the normal direction at Gauss integration points on inter-element faces. Hence,
it is worthwhile introducing here the wave speeds of the preconditioned Euler equations in the
direction of the unit vector n, which are given by the eigenvalues of C−1((�f/�q)n1+(�g/�q)n2),
where �f/�q and �g/�q are the inviscid flux Jacobians with respect to the primitive variables,
and n1 and n2 are the components of the unit vector n=(n1,n2)T. The propagation speeds in this
direction are

�1=�2=un, �3=u′
n+c′, �4=u′

n−c′

where

un = v ·n
u′
n = un(1−�)

c′ =
√

�2u2n+U 2
r

� = 1−�U 2
r

2

� =
(

�p+ �T

�cp

)

�p = ��

�p

∣∣∣∣
T=const.

(6)
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For an ideal gas �p =1/T and �=1/c2. At low speed as Ur→0, �→ 1
2 , and all the eigenvalues

become of the same order as un . We note that all the above equations have been written in non-
dimensional form using the dimensional relationships with the reference values of length lr, density
�r, pressure pr and gas constant Rr. The non-dimensionalized quantities have the following orders
of magnitude:

p,�,T ∼ O(1), u,v,un ∼O(M), H,cp ∼O(1)

u′
n,c

′ ∼ O(M), �∼O(M−2)
(7)

2.2. Perturbed variables

In this work the relative thermodynamic dependent variables p′ and T ′ are defined as

p′ = p− p∞

T ′ = T −T∞
(8)

where p∞ and T∞ are the freestream pressure and temperature, respectively. Furthermore, the
momentum fluxes are defined considering the relative pressure, p′. Then the primitive variables q
and the cartesian components f and g of the convective flux function F are given as follows:

q=

⎡
⎢⎢⎢⎢⎢⎣

p′

u

v

T ′

⎤
⎥⎥⎥⎥⎥⎦

, f=

⎡
⎢⎢⎢⎢⎢⎣

�u

�uu+ p′

�uv

�Hu

⎤
⎥⎥⎥⎥⎥⎦

, g=

⎡
⎢⎢⎢⎢⎢⎣

�v

�vu

�vv+ p′

�Hv

⎤
⎥⎥⎥⎥⎥⎦

(9)

The perturbed formulation of the preconditioned governing equations obtained using Equation (9)
is mathematically equivalent to the original one, Equation (1). In particular, the preconditioning
matrix, Equation (3), is not modified and the ideal gas law is maintained.

3. THE PRECONDITIONED DG DISCRETIZATION

Multiplying Equation (1) by a vector-valued test function v and integrating by parts, we obtain the
weak formulation

∫
�
vTC

�q
�t

dx−
∫

�
∇vT ·Fdx+

∫
��

vTF ·nds=0 ∀v∈H1(�) (10)

where � is the domain with boundary �� and n is the unit outward normal vector. To discretize
in space, we define Vp

h to be the space of discontinuous vector-valued polynomials of degree p
on a subdivision Th of the domain into non-overlapping elements such that �=⋃

�∈Th �. Thus,
the solution and test function space is defined by

Vp
h ={v∈L2(�) v |�∈ Pp,�∈Th}
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where Pp is the space of polynomial functions of degree at most p. The discrete problem then
takes the following form: find qh ∈Vp

h such that

∑
��Th

{∫
�
vThC

�qh
�t

dx−
∫

�
∇vTh ·F(qh)dx

+
∫

��\��
v+T

h Hi (q
+
h ,q−

h ,n)ds+
∫

��∩��
v+T

h Hb(q
+
h ,qbh,n)ds

}
=0 (11)

for all vh ∈Vp
h , where Hi (q

+
h ,q−

h ,n) and Hb(q
+
h ,qbh,n) are numerical flux functions defined on

interior and boundary faces, respectively. Hi takes into account the possible discontinuities of qh
at element interfaces. On interior edges ��\��, Hi depends on the elements interior state q+

h and
on the neighboring elements state q−

h . On boundary edges ��∩��, Hb depends on the interior
state q+

h and a consistent boundary state qbh . We note that Hb may be different from Hi .
Given a set of basis functions � j , j =1, . . . ,N , of the discrete function space Vp

h with N =#Vp
h

we define the residual vector R={(R(qh),� j )} j=1,...,N , where

(R(qh),vh)≡
∫

�
∇vTh ·F(qh)dx−

∫
��\��

v+T

h Hi (q
+
h ,q−

h ,n)ds−
∫

��∩��
v+T

h Hb(q
+
h ,qbh,n)ds

for all vh ∈Vp
h . Then the spatial DG discretization of Equation (11) results in the following global

system of equations:

M�
dQ
dt

−R=0 (12)

where Q is the global vector of degrees of freedom (dof) with qh =∑
j=1,...,N Q j� j . R is the

residual vector as defined above and M� stands for the discretization of the first integral of
Equation (11). Hence,M� is a block diagonal matrix where the block corresponding to one element
couples all the dof of all variables within the element (the coupling among dof of different variables
is due to the action of C).

3.1. Boundary conditions

When �� belongs to �� the boundary fluxes, denoted by Hb(q+,qb,n), are chosen to weakly
prescribe the boundary conditions of the problem. Here, n is the unit outward normal vector,
q+ is the interior state at the boundary and qb is computed according to the conditions that must
be satisfied on the boundary.

At far field, Hb is the numerical flux function Hi (q+,qb,n), where qb is computed by imposing
a set of simplified non-reflecting boundary conditions [6] to minimize spurious reflections. In
particular at the inflow boundary, the state qb has the same pressure as q+, whereas the velocity
vector and the temperature are prescribed based on the freestream values. Conversely, at the outflow
boundary, the state qb has the same temperature and velocity vector as q+, whereas the pressure is
prescribed based on the freestream value. We remark that the simplified non-reflecting boundary
conditions require a far-field boundary well far away from the aerodynamic surface in order to get
efficient and accurate solutions.

At solid walls, Hb is the inviscid flux function in the direction normal to the wall F(qb) ·n, where
qb has the same pressure and temperature as q+, whereas the velocity vector vb=v+−(v ·n)+n
ensures that the normal velocity component is zero on the boundary, (v ·n)b=0.
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3.2. Flux difference splitting

The numerical flux Hi (q+,q−,n) appearing in Equation (11) is computed based on a precondi-
tioning of the artificial dissipation term of Roe’s approximate Riemann solver [27]. In terms of
primitive quantities q, the value of Hi at each face is given by

Hi (q+,q−,n)= 1
2 (F(q+) ·n+F(q−) ·n−F̃�(q+,q−,n)) (13)

where F̃� is given by

C̃|Ã�|�q (14)

Here, �q=q−−q+ and the matrix |Ã�| is defined in terms of the preconditioned eigenvalues
and eigenvectors by

|Ã�|= T̃�|K̃�|T̃−1
�

The symbol ˜ denotes that the matrices are computed using the Roe-averaged variables [28] and
the subscript � denotes that the diagonal matrix of eigenvalues and the modal matrix are derived
from the preconditioned system, where K̃� is the diagonal matrix of the preconditioned eigenvalues,

and T̃� diagonalizes the matrix C̃
−1

(( ˜�F/�q) ·n). We note, that for the non-preconditioned system,
Equation (13) reduces to the standard Roe’s flux difference splitting.

4. TIME DISCRETIZATION OF THE PRECONDITIONED EULER EQUATIONS

The semi-discrete system Equation (12) is discretized in time based on an explicit multistage
time-stepping method. In order to overcome the restrictive explicit CFL stability limit (the Courant
number is approximately equal to 1/(2p+1) for linear stability of TVD Runge–Kutta schemes,
where p is the polynomial degree of the spatial discretization), both the local time stepping
and the preconditioning techniques have been used to improve the convergence speed to steady-
state solutions.

The solution is advanced from time t to time t+�t with an s-stage SSP Runge–Kutta scheme
[29], given by

Q0 = Qt

Qi =
i−1∑
k=0

�ikQk+�ik�tM
−1
� R(Qk), i=1,2, . . . ,s

Qt+�t = Qs

(15)

where i is the stage counter for the s-stage scheme and �ik and �ik are the multistage coefficients
for the i th stage.

The local time step �t on each element � is computed by considering the following relation:

�t= 	

2p+1
· |�|
�x
c +�y

c
(16)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:449–467
DOI: 10.1002/fld



456 A. NIGRO ET AL.

where the preconditioned convective spectral radii �x
c and �y

c are defined as

�x
c = (|ū′|+ c̄′

x )�Sx

�y
c = (|v̄′|+ c̄′

y)�Sy
(17)

The variables �Sx and �Sy represent the projections of the element � onto the x- and y-axis,
respectively, whereas ū′, c̄′

x and v̄′, c̄′
y are obtained applying Equations (6) along the x and y

directions and using the mean values of the flow quantities on each element �. Finally, p is the
polynomial degree of the spatial discretization and 	 is a factor introduced to take into account
that SSP can be more efficient than TVD Runge–Kutta schemes.

5. RESULTS

In this section, we present some numerical results demonstrating the performance of the proposed
preconditioned DG discretization for inviscid very lowMach number flows. To this end, we consider
an inviscid flow past a NACA0012 airfoil at zero angle of attack comparing the preconditioned
DG discretizations with and without perturbed variables. DG solutions on a triangular O-type grid
for different very low Mach numbers and using linear (P1), quadratic (P2) and cubic (P3) elements
are performed. Figure 1 shows the computational grid. The grid is composed of 1792 elements,
and the far-field boundary is located far away from the aerodynamic surface. All computations are
performed in double precision, storing 16 significant digits.

The computational results are organized in two subsections, one focusing on the convergence
characteristics of the preconditioned Euler equations and the other on the accuracy of the converged
solutions.

The residual histories of pressure, p, temperature, T , horizontal, u, and vertical, v, velocity
components versus iteration number are shown to represent the convergence characteristics.

The accuracy of the converged solutions is analyzed both qualitatively and quantitatively. First,
the normalized pressure fields are presented for a qualitative comparison. Then, for the quantitative
analysis, the scaling of computed pressure fluctuations as the Mach number reduces is compared
with the M2 theoretical scaling.

5.1. Effect of the perturbed variables on convergence characteristics

The residuals are measured in terms of the absolute value of the ratio between the dependent
variable changes and the local time step, both computed for each element � using the mean values
of the flow quantities. The residual of the generic dependent variable, q , was defined as:

Res(q)=Max{|�(q̄)/�t |�,∀�∈�} with q= p, T, u, v (18)

The convergence histories of velocity are represented by the residuals of the horizontal velocity
component as similar histories are obtained for the vertical velocity component. Figure 2 shows the
convergence characteristics of pressure (left column), temperature (middle column) and velocity
(right column) at M=10−2, M=10−4 and M=10−6, for linear (P1 top row), quadratic (P2
middle row) and cubic (P3 bottom row) elements, without the perturbed variables. The residuals
are normalized with respect to the residual at the first time step. Overall, we see that, for a given
polynomial degree, all the convergence characteristics have the same convergence speed, which
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Figure 1. Computational grid.

is independent of the Mach number. Nevertheless, the efficiency of the preconditioned scheme
reduces due to the CFL stability condition.

Furthermore in Figure 2 the influence of cancellation error on the residual decay can be clearly
seen. Examining the convergence histories of pressure, temperature, and velocity we can make
two observations. The first is that, for a given polynomial degree, the lower the Mach number, the
smaller the residual decay. The second is that, for a given Mach number, the higher the polynomial
degree, the smaller the reduction of the residual, even if this influence is less evident than the first.

However, both the influence of Mach number and polynomial degree on the decrease of the
residual did not allowed to obtain a solution at the lowest Mach number M=10−6 using the
highest polynomial degree P3.

Figure 3 shows the convergence characteristics with the perturbed variables. The residuals are
not normalized in order to highlight for the dependence of convergence characteristics on the
Mach number. We see that all the residuals decrease as the Mach number reduces. Specifically,
the convergence of pressure and temperature scale as O(M3), whereas the residual of velocity
scales as O(M2). Then, as from Equation (16) and Equation (17) the order of magnitude of the
local time stepping is O(M−1), due to the order given in Equation (7), the resulting orders of
magnitude of the computed pressure, temperature and velocity changes are O(M2), O(M2) and
O(M), respectively, in perfect agreement with the theoretical behavior.

Figure 4 shows the convergence characteristics with the perturbed variables, obtained scaling
the residuals of pressure, temperature and velocity as follows:

Res(p) = Max

{ |� p̄/�t |�
M3

,∀�∈�

}

Res(T ) = Max

{ |�T̄ /�t |�
M3

,∀�∈�

}

Res(u) = Max

{ |�ū/�t |�
M2

,∀�∈�

}
(19)
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Figure 2. History of the nonlinear residuals versus number of iteration steps for the pressure (left
column), temperature (middle column) and velocity (right column), in normalized form without
the perturbed variables at M=10−2, M=10−4 and M=10−6. P1 (top row), P2 (middle row)

and P3 (bottom row) elements.

The plots show that the perturbed variables do not affect the convergence speed in comparison
to the non-perturbed solution (Figure 2). We notice that the residual decay of pressure and velocity
are now independent of the Mach number.

The case is different for the temperature. We see that even if we use the perturbed variables,
the residual of temperature reduces less as compared with the residual of pressure because they
stagnate at a level closer to the starting value. In particular, the decay of the temperature residual
strongly reduces when Mach number approaches zero. The reason of this behavior can be found
in the order of magnitude of the convective fluxes as the Mach number approaches zero. Owing
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Figure 3. History of the nonlinear residuals versus number of iteration steps for the pressure (left
column), temperature (middle column) and velocity (right column), with the perturbed variables at
M=10−2, M=10−4 and M=10−6. P1 (top row), P2 (middle row) and P3 (bottom row) elements.

to the orders of magnitude of the non-dimensionalized quantities, Equation (7), and considering
that p′ ∼O(M2), the convective fluxes in the x and y direction, Equation (9), can be expressed as
follows:

f,g∼

⎛
⎜⎜⎜⎜⎝

O(M)

O(M2)

O(M2)

O(M)+O(M3)

⎞
⎟⎟⎟⎟⎠
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Figure 4. History of the nonlinear residuals versus number of iteration steps for the pressure (left column),
temperature (middle column) and velocity (right column), in scaled form with the perturbed variables at
M=10−2, M=10−4 and M=10−6. P1 (top row), P2 (middle row) and P3 (bottom row) elements.

We see that the range of the order of magnitude of the flux in the energy equation is wider than
that in the other equations. Thereby, the temperature suffers more from the cancellation problem
than the other variables [23].

The dependency of the residual reduction on the polynomial degree is the same previously
observed without the perturbed variables.

Furthermore, we note that using the perturbed variables, while the residual decay of pressure
and velocity is sufficient enough to obtain accurate flow variable distributions, the lowest level of
residual reduction of the temperature shows a strong effect of the cancellation error and this not
always allowed to compute accurate temperature fields.
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Figure 5. Non-perturbed method: test at M=10−5. Contours of normalized pressure
(left column), temperature (middle column) and velocity (right column). P1 (top row),

P2 (middle row) and P3 (bottom row) elements.

Finally, we observe that the explicit scheme results in an inefficient solution technique even
using preconditioning. This is due to the restrictive limitations on the CFL number for higher-
order discretizations. A multigrid strategy might be implemented for the explicit time-stepping
scheme in order to accelerate the convergence of the preconditioned Euler equations to the steady-
state solution.

5.2. Effect of the perturbed variables on the solution accuracy

5.2.1. Normalized isolines. In the following, we present the contour plots of the normalized
pressure, pnorm, temperature, Tnorm and absolute value of velocity, |v|norm. The normalized variable,
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Figure 6. Perturbed method: test at M=10−5. Contours of normalized pressure (left column), temperature
(middle column) and velocity (right column). P1 (top row), P2 (middle row) and P3 (bottom row) elements.

qnorm, was defined as

qnorm=(q−qmin)/(qmax−qmin)

where q= p, T, |v|. Figures 5 and 6 show the normalized contours of pressure (left column),
temperature (middle column) and velocity vector (right column) at M=10−5, using P1 (top
row), P2 (middle row) and P3 (bottom row) elements, without and with the perturbed variables,
respectively. We see that on the basis of normalized pressure and absolute value of velocity isolines
there is no difference between the perturbed and the non-perturbed solutions, whereas isolines of
temperature begin to deteriorate using P3 elements and non-perturbated variables.
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Figure 7. Non-perturbed method: test at M=10−6. Contours of normalized pressure
(left column), temperature (middle column) and velocity (right column). P1 (top row),

P2 (middle row) and P3 (bottom row) elements.

The solutions at M=10−6, see Figures 7 and 8, show more clearly how using the perturbed
variables improves the numerical accuracy in the low Mach number limit. Here, the P1 solutions
obtained using non-perturbated variables exhibit numerical oscillations, and the results worsen as
the polynomial degree increases. This is due to the higher number of computations performed when
the higher-order approximations are used. In other words, the larger the number of computations
with rounding errors occurring at each computation, the worse the solution. Like for the P3 solution
at M=10−6, it was not possible to obtain a converged solution for lower Mach numbers, regardless
of the polynomial degree. From these results we see that the perturbed variables are fundamental
to obtain convergence of continuity and momentum equations at very low Mach numbers, although
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Figure 8. Perturbed method: test at M=10−6. Contours of normalized pressure (left
column), temperature (middle column) and velocity (right column). P1 (top row),

P2 (middle row) and P3 (bottom row) elements.

the energy equation still does not converge. In fact, the perturbed formulation of the Euler equations
allowed to obtain accurate pressure and velocity isolines even for extremely low Mach number
adiabatic flows, M=10−15, see Figure 9, independently of the polynomial degree of the numerical
solution, thus extending the DG scheme to the incompressible limit.

5.2.2. Pressure fluctuations. Figure 10 shows the pressure fluctuations (pmax− pmin)/pmax versus
the Mach number at M=10−2, M=10−4, M=10−6 and M=10−15, using P1, P2 and P3
elements, with the perturbed variables. We see that the perturbed formulation of the Euler equations
preserves the accuracy of the solutions at extremely low Mach numbers. In perfect agreement with
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Figure 9. Perturbed method: test at M=10−15. Contours of normalized pressure (left column), temperature
(middle column) and velocity (right column). P1 (top row), P2 (middle row) and P3 (bottom row) elements.

the theory, the pressure fluctuations scale exactly with the square of the Mach number down to
M=10−15.

6. CONCLUSIONS

In this work we have presented the main features of a preconditioned DG discretization for
inviscid very low Mach number computations. The method solves the compressible Euler equations
written in terms of primitive variables and iterates to steady-state using an explicit scheme. The
algorithm employs the perturbed formulation of the governing equations and the low Mach number
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Figure 10. Pressure fluctuations versus Mach number for P1, P2 and P3 elements using perturbed variables.
Dashed and dotted line display the theoretical behavior of M2.

preconditioning of both the time-derivative term of the governing equations and of the numerical
flux function (full preconditioning approach).

Numerical results have been presented solving the 2D compressible Euler equations at different
very low Mach numbers using linear, quadratic and cubic elements, with and without the perturbed
variables. The perturbed formulation allowed to investigate on the relationship between convergence
characteristics and Mach number. For a given polynomial degree, the convergence characteristics
of continuity, momentum and energy equations were found independent of the Mach number,
showing that the scaling of the computed pressure, temperature and velocity changes as Mach
number reduces are in agreement with the M2, M2 and M theoretical scaling, respectively.
Furthermore, for a given Mach number, it was shown that the residual decays reduce when the
polynomial degree increases even using perturbed variables. In all cases the convergence speed
was not affected by the perturbed variables. Some convergence problems were found for the energy
equation at very low Mach numbers due to cancellation errors. Nevertheless, it has been shown that
the perturbed formulation is mandatory to obtain accurate pressure and velocity distributions at
low Mach numbers, especially when computations are performed using high-order representations
of the unknowns.
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